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The authors consider laws of heat removal with evaporation and boiling of liquid 
in the channels of evaporators when power is supplied at boundary conditions of 
the third kind. 

Widespread use has been made recently in heat pipes of evaporators in the form of 
capillary structures with screwlike channels. To calculate the parameters of these heat 
pipes one must know the maximum heat flux density which the channel can achieve. This maxi- 
mum value depends on the channel profile, its length, width and depth, and for triangular 
channels, the vertex angle, and also the material, the cleanliness of fabrication, the 
orientation of the evaporator relative to the gravitational field, the properties of the 
working liquid, and also the boundary conditions at the outer surface of the pipe. 

Literature [1-3] mainly contains a description of the heat-transfer process in chan- 
nels when the power is supplied at boundary conditions of the second kind. In [2] the 
governing equation was given for calculating the average liquid velocity in the channel 
and it was used to calculate the total heat flux. 

In [i], from equating the change in hydraulic and capillary pressures in liquid flow 
in a triangular channel, an equation was obtained for calculating the maximum heat flux 
density. The calculation is compared with data obtained from tests of four heat pipes in 
which the evaporator channels have a different vertex angle. Thecalculated values being 
larger than the experimental was explained by a restriction on transport of liquid in the 
axial direction of the pipe. 

In [3] Fel'dman, using this model, improved the computational formula for a triangular 
channel and derived it for a rectangular channel. He proposed a technique for determining 
the heat-transfer coefficient, using a finite-difference calculation of the temperature 
drop through the channel wall and the liquid layer. 

In [i, 3] the liquid meniscus in the transverse direction was taken as the moving 
meniscus in the computational model. It was assumed that full wetting occurred. However, 
for incomplete Wetting, when 0 = 90 -- a, the transverse meniscus has a planar form and the 
analytical model loses its meaning. In [2] the so-called equivalent meniscus was taken, 
having curvature at any wetting angle, in addition to e = 90 ~ 

We have attempted to determine experimentally the influence of the evaporator channel 
parameters on the heat removal, with power supplied at boundary conditions of the third kind 
[4]. This work differs from the previous [1-3] in that the investigations were made in an 
experimental facility in which one could: 

a) supply heat to the evaporator at boundary conditions of the third kind; 

b) limit heat removal by processes occurring in the evaporator channels; 

c) determine experimentally the influence on the maximum heat removal of the geometric 
parameters of the channels of triangular and rectangular profile. 

1. Experimental Facility. The facility (Fig. i) comprised a vacuum oven (Dint = 0.45 
m; h = 0.65 m), the evaporator element i0, the working liquid supply system, the condenser 
3 and the thermal screen 2. 
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Arrangement of the experimental facility. 

The evaporator unit. 

The evaporator unit (Fig. 2) consists of the evaporator channel itself i, the liquid 
heat exchanger 2, the porous arteries 3, and the two tanks 4 into which the liquid is poured 
from the branch pipes 5. The length of the evaporator is 0.I m, and its width is 0.05 m. 
Its position in space is horizontal. Because of the symmetry in the location of the 
arteries the length of the evaporator is arbitrarily divided into two equal sections, each 
of length about 0.05 m. The initial part of the section of length xo = 0.01 m makes contact 
with a porous artery (a bundle of stainless steel mesh), and the remaining part Xma x = 0.04m 
has its surface open for evaporation or boiling of liquid. 

The condenser 3 (Fig. i) is a thin-walled copper cylinder carrying coils for the flow 
of the cooling agent. The thermal screen 2 is cone-shaped, and also has a coil on its outer 
side. 

The working liquid supply system includes the reservoir vessel 4, a volume with a 
system for maintaining constant liquid head 5, a rotameter 7, a valve 6, a liquid heat 
exchanger 8 and a tap 9. The liquid reaches the volume 5 from reservoir 4, whence it goes 
to the tanks via the rotameter 7 which measures the flow rate and the valve 6 which controls 
it, and the branch pipes 3. With the aid of heat exchanger 8 the temperature of the working 
liquid is kept equal to that of condensation. From the tanks the liquid is supplied along 
the porous arteries, under the action of capillary forces, to the evaporator channels~ where 
the process of vaporization or boiling occurs. The vapor is condensed on the surface of the 
cylinder 3 and flows into the overflow vessel 12 (Fig. i). The thermal screen 2 does not 
allow the vapor to condense upwards~ in order to avoid drops falling into the evaporator, 
The heat-transfer agent reaches the liquid heat exchangers from the thermostats 13-16. 

Acetone was used as the working liquid. It can be used over quite a wide temperature 
range (180 to 470~ In addition, acetone wets metal well (cos 0~ i). 

Before the start of the experiment the acetone was degassed by vacuum pumping. In 
order to minimize the influence of variation of properties of the working liquid on the heat 
transfer, the saturation pressure was kept practically constant in the experimental facility 
(0.14.105-0.145"105 N/m~). 

As a developed heater surface we used brass plates with a system of triangular channels 
of different width (from 0.25"10 -3 to 0.8"10 -3 m), effective length (from 5.10 -3 to 40.10 -3 ) 
and vertex angle (from 15 to 90~ and also rectangular channels with different depth (from 
0.2,10-3 to 1.6.10-3 m). 

2~ Variation of Heat Removal along a Channel. During the experiments we recorded the 
temperature field along the channel wall. The results of preliminary tests showed that the 
channel wall temperature increased with increasing distance from the place where the liquid 
was supplied. This indicates nonuniformity of heat removal along the channel. 
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Fig. 3. Variation of 
the local heat flux 
along a channel: Q', 
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To determine the law for the variation of heat flux along the evaporator channel we 
divided its body arbitrarily into elemental sections for which a heat flux balance was 
written. The local heat flux was calculated by a finite difference method. It was assumed 
in the calculation that heat removal was only due to vaporization of liquid in the channels, 
and that there was no heat transfer between the wall and the vapor. The heat transfer at 
the boundary, the base of the evaporator and the heat-transfer agent in the liquid heat 
exchanger, is described by the Newton--Rikhman law 

--  Z OT(X,oy y) v = 0 =  ae (T z - -  T w ). (1 )  

The results of the calculation are shown in Fig. 3. The area of the quadrilateral, 
multiplied by a scale factor, equals the total effective heat flux dissipated by the chan- 
nel at the free line Xma x. The variation of heat flux along the channel can be represented 
with satisfactory accuracy (to 30%) by an elementary hyperbolic function. In this case the 
effective power is given by 

XoTX~ax 
Q = ~ Q~ Xo dx = Q~xo In Xo-~-Xmax (2) 

x0 X X 0 

By dividing both sides of Eq. (2) by the latent heat of vaporization, we obtain the mass 
flow rate of working liquid flowing in the channel at section x0: 

m = Q~ Xo In x0 + Xmax (3) 

3. D i m e n s i o n s  o f  t h e  L i q u i d  F i l m  i n  t h e  C h a n n e l .  On t h e  b a s i s  o f  e x p e r i m e n t s ,  
B r e s l e r  [2] c o n c l u d e d  t h a t  t h e  moving  m e n i s c u s  i n  t h e  c h a n n e l  i s  an  e q u i v a l e n t  l i q u i d  m e n i s -  
c u s .  Our a n a l y t i c a l  mode l  i s  a l s o  b a s e d  on t h i s .  I n  t h i s  c a s e ,  f o r  c o n v e n i e n c e  o f  c a l c u l a -  
t i o n ,  the arc of the transverse meniscus is arbitrarily replaced by a straight line, the 
so-called nominal width t(x), i.e., one considers the cross section that the layer of liquid 
would have in the case of a planar meniscus. 

3.1. Triangular Channel. To find the nominal width of the liquid layer t(x) we need 
to know the volume of the channel not occupied by liquid. In the case when the supply 
artery brings considerably more liquid to the channel than the channel vaporizes, we can 
consider that the nominal width of the liquid layer coincides with the true width (Fig. 4): 

t (X)maxlx=~o= t. 

If the maximum heat flux is achieved, then 

t (x)~lx=~~ O. 

For a hyperbolic type of heat removal, the maximum volume of liquid vaporized in the section 
from Xo to Xo+Xmax is: 

[ m ] 
V m ~ - -  - -O;x~ In X~ ~ X ( m - - i ) I n  x ~  . (4) 

"" r*p~, xo X o + X i - i  
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F i g .  4.  Diagram to  d e t e r m i n e  t h e  d i m e n s i o n s  o f  
t h e  l i q u i d  f i l m  a t  any s e c t i o n  o f  a t r i a n g u l a r  
c h a n n e l .  

On the other hand, this volume is 

Vm,~ = K~t~ctg~Xm~x. 

The volume o f  l i q u i d  v a p o r i z e d  i n  t h e  s e c t i o n  f rom xo to  xo + x  

The same volume is 

V ( x ) :  Q~176 [ l n  x o + x  + ~ ( n _ i ) l n x o + & ]  
r*p I Xo i=1 Xo+X~_iJ 

V (x )  : K p ( t  - -  2At) a ctg ax. 

By equating Eqs. (4) and 

i,< t I At = - - { 1 - -  Xm~x 

Xo i ~ l  

The nomina l  w i d t h  o f  t h e  l i q u i d  l a y e r  a t  t h e  s e c t i o n  xo + x  i s  

In x 0 q - x  + ~ ( n _ i )  l n X o + X i  
t (x)  = t x m , ~  Xo :~=l X o + & - ~  . 

x In Xo + Xm~x + ~2 (m--i) In x0 + xl 

X0 i = l  X0@ Xi-I 

(5) and (6) and (7) and separating out terms, we obtain 

it I 

~ xo ~- vi In x 0 - F x  5 ~ ( n - - i )  ln - -  
xo := 1 Xo + xi_ 

7. xo + + 
Xo-~ Xl-i 

(5) 

(6) 

(7) 

(s) 

(9) 

As has already been mentioned, when the supply artery brings considerably more liquid 
to the channel than the channel can vaporize, the transverse meniscus at the start of the 
channel (section Xo) can be considered planar. With increasing distance from this section 
the meniscus becomes curved until it becomes tangent to the wall of the channel at its 
cusps under complete wetting (section Xo +XR). The radius of this meniscus is 

t 
=. (10) R~(xR) -- 2 cos 

The nominal width of the liquid layer at section xo +x R is 

((x) : : t  ( 1 - - s i n a s i n ~ ) .  
COS g (Z 

(ii) 
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- F i g .  5. Diagram f o r  d e t e r m i n i n g  t h e  d i m e n s i o n s  o f  t h e  
l i q u i d  f i l m  a t  any s e c t i o n  o f  a r e c t a n g u l a r  c h a n n e l .  

The angle ~ is defined from the equation 

tgo~ sin z~ 2 sin~; + 1 ( ~ ] . . . . .  ~ + tgo~+ tg3a = 0- (12) 
COS 2 CZ COS 3 0~ COS 20~ \ '2 / ] 

By s i m u l t a n e o u s  s o l u t i o n  o f  Eqs.  (9) and (11) we f i n d  t h e  v a l u e  x R. 

The radius of the transverse meniscus at the section from Xo to Xo +x R is 

t 
Rtr(X) -- (13) 

2 cos ?(x) 

The a n g l e  y (x )  i s  d e t e r m i n e d  f rom t h e  f o l l o w i n g  e q u a t i o n s :  

t ( x ) = t [ 1 - - s i n  [3(x) sin a - -  sin ?(x) sin C Z c o s  ~ cos ? (x) ] ' ,  (14) 

tg~  s in2~(x )+ tgy (x )  + l i[ ~ ] [ ] cos2?(x) cos2~( x -~-  - -~(x)  - -2s in~(x )  cos?(x)ctgacos 2?(x)ctg + sin?(x)a + tg2?(X~)ctga -- 0. (15) 

The w e t t i n g  a n g l e  in  t h e  s e c t i o n  f rom Xo to  Xo + x  R 

0 (x) = cz - -  ? (x). (16) 

With full wetting in the section from Xo +XR to Xo +Xmax the arc of the transverse meniscus 

is tangent to the channel wall. Its radius is given by 

P~r(X) = t (x) cos a (17) 
2(1 - -  s ins  sin~) 

The c a p i l l a r y  e q u i v a l e n t  r a d i u s  o f  t h e  men i scus  a t  any  s e c t i o n  o f  t h e  c h a n n e l  [ 2 ] ,  a l l o w i n g  
f o r  t he  c u r v a t u r e  of  t h e  l i q u i d  l a y e r  in  b o t h  t h e  l o n g i t u d i n a l  and t h e  t r a n s v e r s e  d i r e c t i o n s ,  
i s :  

A (x) 
Re(x)= 

I-/wd(x ) -- t (x) (18) 

Re(X)= t(x)cos ~ _ t(x)Cl(oO 
2(I - -  sina) cos 0 cos0 (19) 

At the maximum heat removal, Re(x) varies from tC1(a) at section Xo to a value close to 
zero at section xo +Xma x. Since we can always obtain the necessary drop in capillary pres- 
sure, because of this variation in the width of the liquid layer, we consider that the 
wetting angle for the longitudinal meniscus at the walls is constant (0 = const). 
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The transverse flow area for liquid in the channel at section Xo +x (Fig. 4) is 

A (x) = ti(x) ctg  ~ _ tz (x) C2 (~). 
4 

The hydraulic diameter is 

(20) 

4A (x) (21) 
Dh~-- H ( x ) '  

COS o'. = t(x) C3(a)~ (22) 
Dh= t(x) (1 + ~in~z) 

3.2. Rectangular Channel. In a rectangular channel the nominal width of the liquid 
layer is equal to the channel width, i.e., t(x)= t~ The distance from the cusp of the 
channel to the nominal width of liquid at section xo +x is found analogously to t(x) for 
the triangular channel (Fig. 5): 

n 

h(X) = d Xmax XO i=1 X0"t- X i - t  
x . m (23) 

In Xo + xm~ + ~ ( m - - i ) l n  x o + x i  
Xo ~'=1 Xo+ xi-~ 

With full wetting in the section from Xo to Xo +x R the radius of the transverse meniscus 
varies from ~ to t/2. We can find the value of h(x) in this section from the equation 

t 
h (x) = 2 cosy(x) [sin ~ (x) - -  sin ? (x)], (24) 

where the angle y(x) is given by: 

[sin f3 (x) - -  sin y (x)] cos ? (x) - -  - - ? (x )  + cosy(x)sin?(x) = 0. (25) 

At t h e  s e c t i o n  xo+xR(Y = 0 ;  13=45 ~ ) 

h (x) = 0.353 t. 

(23), we obtain x R. 

Re(x)= - -  

( 2 6 )  

The capillary equivalent radius of Substituting this value into Eq. 
the meniscus is 

2 cos 0 (27) 

It can be seen that the required capillary pressure is achieved only in the case when the 
boundary angle varies. We consider that 

Then we have 

01x=xo---- 90 ~ 01x=xo+~max : 0~ 

l~e(x)Ix=xo= oo; 

t 
Re (X)lX=xo+xmaf = 2 

The area of the transverse liquid stream at section Xo +x (Fig. 5) is 

J (x) = tb (x). 

2tb (x) 
D h(x):  t + b (x-----5' 

o ( x )  = d - 

/z 
In xo + x + X (n--i)  ln Xo q- X~ 

Xo i=~ Xo+ x~_i 
m 

xo + Xmax + ~  (m--i)  In Xo + xi 
XO i=1 XOJU Xi_ i - 

(28) 

(29) 

(3o) 

The hydraulic diameter is 

where 
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By determining the dimensions of the liquid film at any section of the channel for a 
given law of heat removal we can set up a physical model of the evaporato~ and derive a 
formula for calculating the maximum heat flux density achievable by the channel. By com- 
paring the experimental and computed data, we can evaluate how correct was our choice of 
analytical model. 

NOTATION 

A(x), area of transverse liquid layer in the channel at section x, m2; b(x), height 
of the liquid layer at section x, m; D, diameter, m; d, depth of channel, m; CI(~), a con- 
stant, defining R(x); C2(~), a constant defining A(x); h(x), height of the free channel 
surface at section x, m; h, height of the vacuum volume, m; Kp, coefficient accounting for 
the curvature of the vapor volume in the channel; m, the mass flux of liquid in the channel 
at section x, m3/sec; Q, heat flux, W; Q,O, height of the hyperbola at the point Xo, W/m; 
R(x), radius of the meniscus at section x, m; r*, latent heat of vaporization, J/kg; T, 
temperature, K; t, channel width, m; t(x), nominal width of liquid layer at section x; V, 
volume of liquid evaporated in the channel, m3; V(x), volume of liquid evaporated in the 
channel at section x, m3; H, perimeter, m; x, y, coordinates; a, half angle at the vertex 
of a triangular channel, deg; ~e, heat-transfer coefficient, W/m2"K; 8, angle between the 
nominal width of the liquid layer and the meniscus radius, deg; ~, angle between the menis- 
cus radius and the straight line joining the cusps of the channel, deg; @, wetting angle, 
deg; %, thermal conductivity, W/m.K; p, density, kg/m3; T, time, sec; Subscripts: h, 
hydraulic; l, liquid; o, initial; max, maximum; min, minimum; int, internal; e, equivalent; 
tr, transverse; wd, wetted; x, index of channel section; XR, index of channel section where 
the transverse meniscus is tangent to the walls; w, wall. 

i. 

2. 

3. 
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